胜者树与败者树

胜者树与败者树 

 

一、胜者树

        胜者树的一个优点是,如果一个选手的值改变了,可以很容易地修改这棵胜者树。只需要沿着从该结点到根结点的路径修改这棵二叉树,而不必改变其他比赛的结果。

Fig. 1

Fig.1是一个胜者树的示例。规定数值小者胜。

1.         b3 PK b4,b3胜b4负,内部结点ls[4]的值为3;

2.         b3 PK b0,b3胜b0负,内部结点ls[2]的值为3;

3.         b1 PK b2,b1胜b2负,内部结点ls[3]的值为1;

4.         b3 PK b1,b3胜b1负,内部结点ls[1]的值为3。.

当Fig. 1中叶子结点b3的值变为11时,重构的胜者树如Fig. 2所示。

1.         b3 PK b4,b3胜b4负,内部结点ls[4]的值为3;

2.         b3 PK b0,b0胜b3负,内部结点ls[2]的值为0;

3.         b1 PK b2,b1胜b2负,内部结点ls[3]的值为1;

4.         b0 PK b1,b1胜b0负,内部结点ls[1]的值为1。.

Fig. 2

二、败者树

        败者树是胜者树的一种变体。在败者树中,用父结点记录其左右子结点进行比赛的败者,而让胜者参加下一轮的比赛。败者树的根结点记录的是败者,需要加一个结点来记录整个比赛的胜利者。采用败者树可以简化重构的过程。

Fig. 3

Fig. 3是一棵败者树。规定数大者败。

1.         b3 PK b4,b3胜b4负,内部结点ls[4]的值为4;

2.         b3 PK b0,b3胜b0负,内部结点ls[2]的值为0;

3.         b1 PK b2,b1胜b2负,内部结点ls[3]的值为2;

4.         b3 PK b1,b3胜b1负,内部结点ls[1]的值为1;

5.         在根结点ls[1]上又加了一个结点ls[0]=3,记录的最后的胜者。

败者树重构过程如下:

·            将新进入选择树的结点与其父结点进行比赛:将败者存放在父结点中;而胜者再与上一级的父结点比较。

·            比赛沿着到根结点的路径不断进行,直到ls[1]处。把败者存放在结点ls[1]中,胜者存放在ls[0]中。

Fig. 4

        Fig. 4是当b3变为13时,败者树的重构图。

        注意,败者树的重构跟胜者树是不一样的,败者树的重构只需要与其父结点比较。对照Fig. 3来看,b3与结点ls[4]的原值比较,ls[4]中存放的原值是结点4,即b3与b4比较,b3负b4胜,则修改ls[4]的值为结点3。同理,以此类推,沿着根结点不断比赛,直至结束。

         由上可知,败者树简化了重构。败者树的重构只是与该结点的父结点的记录有关,而胜者树的重构还与该结点的兄弟结点有关。

Advertisements
This entry was posted in Uncategorized. Bookmark the permalink.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s